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1. Introduction

Correlation functions of operators creating string states in three dimensional anti-de Sitter

space (AdS3) are essential ingredients to establish the consistency of string theory in this

geometry as well as to explore the AdS/CFT correspondence beyond the supergravity

approximation. However the non-rational structure of the SL(2,R) CFT describing the

worldsheet of strings propagating in AdS3 presents some difficulties to the computation of

these correlators, since very little is known about non-compact conformal field theories in

general.

Nevertheless, amplitudes of some physical states were computed in reference [1]. The

starting point in these calculations is the SL(2,C)/SU(2) WZW model which describes

the worldsheet of strings propagating in the hyperbolic space H3. Two, three and four

point functions of primary fields in this coset model were derived in references [2, 3].

The connection between these correlators and some amplitudes in the Lorentzian theory

described by the SL(2,R) WZW model was performed in [1] using the equivalence between

string theory on AdS3 and the dual two dimensional CFT on the boundary. Actually, the
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interpretation of these amplitudes as correlation functions of the dual CFT is crucial to

determine the correlators and to establish the structure of the factorization of four point

functions. In this way the closure of the operator algebra on the Hilbert space of string

theory on AdS3 [4, 5] was verified in [1] for four point functions of primary fields related

to primaries of the SL(2,C)/SU(2) coset model through analytic continuation.

However not all the states in the physical spectrum of string theory on AdS3 can

be obtained analytically continuing fields in H3. Actually, the spectral flow symmetry of

the SL(2,R) WZW model establishes the occurrence of winding states created by spectral

flowed operators [4]. An important auxiliary tool to construct these states is the spectral

flow operator which allows to interpolate between objects in different winding sectors w.

Two and certain three point functions containing spectral flowed fields were computed

in [1] and used to verify both the factorization of four point functions of w = 0 fields into

products of three point functions summed over intermediate physical states and the pattern

of spectral flow number conservation of the correlators determined by the SL(2,R) current

algebra.

Two alternative methods were proposed in [1] to evaluate N -point functions containing

states in winding sectors w 6= 0. Both procedures involve the insertion of one auxiliary

spectral flow operator for each winding unit. This implies the calculation of expectation

values of more than N vertex operators. The two approaches were applied to compute two

point functions in arbitrary winding sectors and three point functions involving one w = 1

and two w = 0 states, but more general three and four point functions require the calcula-

tion of correlators with five or more operator insertions, with the consequent complications.

These general amplitudes are needed to definitely settle the question about the unitarity

of the theory. Indeed the structure of the factorization of four point functions should be

consistent with the physical Hilbert space of string theory, but four point functions involv-

ing spectral flowed states have not been computed so far. In this paper we give one step

forward towards this project by computing the three point function containing two w = 1

states from the five point function involving two spectral flow operators. We also study

the four point function including one w = 1 state starting from the five point function

containing only one spectral flow operator. Besides we find expressions for amplitudes of

three w = 1 states satisfying certain particular relations among the spins of the fields.

As is well known expectation values of fields in WZW models must obey the Knizhnik-

Zamolodchikov (KZ) equations [6], a system of linear differential equations which follow

from the Sugawara construction of the energy-momentum tensor. An important additional

property of WZW models for compact groups is the existence of null vectors in the Verma

modules of the primary fields. These give additional differential equations which allow to

determine the fusion rules and eventually solve the theory [7]. Unfortunately the unitary

representations of SL(2,R) which give rise to the physical spectrum of string theory on

AdS3 do not contain singular vectors. Nevertheless the spectral flow operator has a null

current algebra descendant which plays a relevant role in this non-rational theory. Indeed

it adds one differential equation for each unit of spectral flow of the operators involved

in the amplitudes. Moreover this null state allows to simplify the KZ equations in the

coordinates labeling the position of the spectral flow operators [1].
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Despite all this information the differential equations to be obeyed by correlation func-

tions containing spectral flowed operators are difficult to solve because, as we will see, they

turn out to give iterative relations. Actually we shall show in the following sections that

the KZ and null vector equations for amplitudes of states in winding sectors w 6= 0 relate

two or more expectation values in which the spectral flowed fields at a given position have

different spins and conformal dimensions. Nonetheless we shall manipulate and solve the

system of iterative equations in certain particular cases needed to obtain correlators of

three w = 1 string states and four point functions involving one w = 1 state.

The organization of this paper is as follows. For completeness and in order to introduce

our notations and conventions, in the next section we briefly review the spectrum of string

theory on AdS3, recall the construction of one-unit spectral flowed operators and collect

the results of the amplitudes involving such fields which have been obtained so far. In

section 3 we compute the three point function involving two w = 1 fields and study its

pole structure. As a consistency check, we verify that it correctly reproduces the two point

function of a w = 1 field when the third operator is the identity. In addition we find,

as a byproduct, the four point function including one w = 1 field along with a spectral

flow operator. In section 4, we discuss the Ward identities to be satisfied by correlation

functions containing w = 1 fields and we deduce the modified KZ and null vector equations

that they must obey. The solution to these equations is analyzed in section 5 for the case of

the four point function of one w = 1 field and three unflowed generic states. This is done

by first expanding the correlator in powers of the corresponding cross ratio coordinate.

We explicitly find the lowest order contribution and write an iterative differential equation

for the higher orders in terms of the lowest one. Two consistency checks are succesfully

performed. First we verify that, for appropriate choices of the spins, the correlator properly

reduces to the three point function involving one w = 1 field, as computed in [1]. Then

we also verify that the functional form of the four point function including one w = 1 field

and a spectral flow operator computed in section 3 is correctly reproduced. Conclusions

and discussions are offered in section 6.

We have included three appendices. Some properties of five and six point functions

containing states with generic spin along with spectral flow operators are listed in ap-

pendix A, whereas appendix B presents some useful formulae which are used in the main

body of the article. In appendix C we compute expressions of the three point function

involving three w = 1 operators for certain particular relations among the spins of the

fields. This is done by proposing an ansatz for the solution of the modified KZ and null

vector equations.

2. Perturbative string theory on AdS3

In this section we gather known results about the spectrum and correlation functions of

perturbative string theory on AdS3 in order to set up our conventions. We follow the same

notation as reference [1] and so the expert reader can proceed directly to the next section.
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2.1 Notation and conventions

The Hilbert space of the WZW model is a sum of products of representations of the SL(2,R)

current algebra given by

[J3
n, J3

m] = −
k

2
nδn+m,0 ,

[J3
n, J±

m] = ±J±
n+m ,

[J+
n , J−

m] = −2J3
n+m + knδn+m,0 ,

and the same for J̄3,±. The Sugawara construction of the energy-momentum tensor

T (z) =
1

k − 2
(J+(z)J−(z) − J3(z)J3(z)) ,

determines the Virasoro generators

L0 =
1

k − 2

[

1

2
(J+

0 J−
0 + J−

0 J+
0 ) − (J3

0 )2 +
∞
∑

m=1

(J+
−mJ−

m + J−
−mJ+

m − 2J3
−mJ3

m)

]

,

Ln 6=0 =
1

k − 2

∞
∑

m=1

(J+
n−mJ−

m + J−
n−mJ+

m − 2J3
n−mJ3

m) ,

which obey the following commutation relations

[Ln, Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0 .

The central charge is given by

c =
3k

k − 2
,

with k > 2.

The physical states of string theory on AdS3 are in unitary representations of the

universal cover of SL(2,R) [4]. These are generated from the continuous (Cα
j ) and the

lowest (D+
j ) and highest (D−

j ) weight discrete representations of the zero modes acting

with J3,±
−n , n > 0. In our conventions these are

D+
j = {|j;m〉 : m = j, j + 1, j + 2, . . .} ,

D−
j = {|j;m〉 : m = −j, −j − 1, −j − 2, . . .} ,

with
1

2
< j <

k − 1

2
, (2.1)

and

Cα
j = {|j, α;m〉 : m = α, α ± 1, α ± 2, . . . , α ∈ R} , j =

1

2
+ is , s ∈ R .

The conformal weight of the primary fields is given by

∆j = −
j(j − 1)

k − 2
, (2.2)
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and similarly for ∆̄j̄. The current algebra descendants of the primary operators contribute

an additional integer for each excitation level. In the string theory application one can

consider the spacetime to be a product of AdS3 times an internal manifold. In this case

the conformal weight of the physical states may be supplemented with a contribution from

the internal CFT, usually denoted h. Moreover the physical state conditions for string

states, namely L0|Ψ〉 = |Ψ〉, Ln|Ψ〉 = 0, n > 0 and L0 = L̄0 determine j = j̄.

The spectral flow automorphism

J̃3
n = J3

n −
k

2
wδn,0 , J̃±

n = J±
n±w , L̃n = Ln + wJ3

n −
k

4
w2δn,0 ,

parametrized with w ∈ Z, generates new representations defined by

J±
n±w|j,m,w〉 = 0 , J3

n|j,m,w〉 = 0 , (n ≥ 1) ,

J3
0 |j,m,w〉 =

(

m +
k

2
w

)

|j,m,w〉 .

The conformal weight of the primary fields (2.2) transforms consequently as

∆w
j = −

j(j − 1)

k − 2
− mw −

k

4
w2 , (2.3)

and similarly for ∆̄w̄
j . Periodicity of the closed string under the worldsheet coordinate

transformation σ → σ + 2π settles w = w̄. These spectral flowed states have to be added

to the unflowed fields of the full representations generated from D±
j and Cα

j in order to

describe the complete spectrum of the theory.

The primary states in the sector w = 0 can be represented by an operator Φj(x, x̄;w, w̄)

which satisfies the following OPE with the currents

Ja(z)Φj(x, x̄;w, w̄) ∼
Da

z − w
Φj(x, x̄;w, w̄) , (a = 3,±) ,

where the differential operators

D+ =
∂

∂x
, D3 = x

∂

∂x
+ j , D− = x2 ∂

∂x
+ 2jx ,

give a representation of the Lie algebra of SL(2). Here x, x̄ keep track of the SL(2) weights

of the fields and they are interpreted as the coordinates of the boundary in the AdS/CFT

context.

One can also consider operators in the m basis, obtained through the following trans-

formation from the x basis

Φj;m,m̄ =

∫

d2x

|x|2
xj−mx̄j−m̄Φj(x, x̄) , (2.4)

where m − m̄ is an integer.

In the sector w = 1 the spectral flowed states are constructed by the fusion of Φj with

the spectral flow operator Φ k
2

through the following operation [1]

Φw=1,j
J,J̄

(x, x̄; z, z̄) ≡ lim
ε,ε̄→0

εmε̄m̄

∫

d2y yj−m−1ȳj−m̄−1

×Φj(x + y, x̄ + ȳ; z + ε, z̄ + ε̄)Φ k
2
(x, x̄; z, z̄) , (2.5)
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where

J = m +
k

2
, J̄ = m̄ +

k

2
, (2.6)

denote the left and right spins of the w = 1 field. In the x basis, the winding number w

turns out to be always positive, unlike in the m basis where the sign of w is correlated with

the sign of m, thus distinguishing by convention incoming from outgoing spectral flowed

states in the correlation functions.

Alternatively Φw=1,j
J,J̄

can be also defined by integrating over ε as

Φw=1,j
J,J̄

(x, x̄; z, z̄) ≡ lim
y,ȳ→0

yj−mȳj−m̄

∫

d2ε εm−1ε̄m̄−1 ×

×Φj(x + y, x̄ + ȳ; z + ε, z̄ + ε̄)Φ k
2
(x, x̄; z, z̄) . (2.7)

Both definitions (2.5) and (2.7) are equivalent and they are understood to hold inside

correlation functions. The first one is local in z, z̄ whereas the second one is local in x, x̄.

As pointed out in [1], the limit ε → 0 in (2.5) − and similarly y → 0 in (2.7) − exists and it

verifies several important checks. For instance it has the right operator product expansions

with the currents, namely

J(x′, z′)Φw=1,j
J,J̄

(x, z) = −(j − m − 1)
(x − x′)2

(z′ − z)2
Φw=1,j

J+1,J̄
(x, z) (2.8)

+
1

z′ − z

[

(x − x′)2
∂

∂x
+ 2

(

m +
k

2

)

(x − x′)

]

Φw=1,j
J,J̄

(x, z) ,

where

J(x, z) = −J−(z) + 2xJ3(z) − x2J+(z) .

Furthermore the definition (2.5) reproduces the expressions derived in [1] for the two point

function of spectral flowed states and the three point function which includes in addition

two other operators in the sector w = 0.

Vertex operators for string states in higher winding sectors can be easily obtained in

the m basis where they are expressed in terms of SL(2) parafermions and one free boson [4]

(see [8] for the free field representation). However, as the winding number increases, they

become more complicated in the x basis.

2.2 Correlation functions of winding states

Correlation functions of unflowed states were computed in [1] performing analytic contin-

uation on the results for the Euclidean SL(2,C)/SU(2) WZW model obtained in [2, 3].

As discussed in [1], correlators including spectral flowed states can be evaluated in the m

basis starting from expectation values of states in the w = 0 sector including spectral flow

operators. Alternatively one can perform the spectral flow operation directly in the x basis

using the definition (2.5).
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The two point function of spectral flowed states was computed in [1] (see also [8] for a

derivation in the m basis using the free field theory approach) and it is the following

〈Φw,j
J,J̄

(x1, z1)Φ
w,j′

J,J̄
(x2, z2)〉 = x−2J

12 x̄−2J̄
12 z

−2∆w
j

12 z̄
−2∆̄w

j

12 (2.9)

×

[

δ(j + j′− 1) + δ(j − j′)
πB(j)

γ(2j)

Γ(j + m)

Γ(1 −j + m)

Γ(j − m̄)

Γ(1 −j − m̄)

]

,

where ∆w
j is given in (2.3) and

B(j) =
k − 2

π

ν1−2j

γ
(

2j−1
k−2

) , ν = π
Γ

(

k−3
k−2

)

Γ
(

k−1
k−2

) , (2.10)

γ(x) ≡
Γ(x)

Γ(1 − x)
. (2.11)

Recall that in the x basis the operators are labeled with positive w, so this two point

function conserves winding number as expected. As is well known an N point function

can violate winding number by N − 2 units [1, 9].1 The three point function including one

operator in the w = 1 sector is the following2

〈

Φw=1,j1
J,J̄

(x1, z1)Φj2(x2, z2)Φj3(x3, z3)
〉

=

= B(j1)C

(

k

2
− j1, j2, j3

)

π
1

γ(j1 + j2 + j3 − k/2)

×
Γ(j1 + J − k

2 )

Γ(1 + J − j2 − j3)

Γ(j2 + j3 − J̄)

Γ(1 − j1 − J̄ + k
2 )

×
(

xj3−j2−J
21 xj2−j3−J

31 xJ−j2−j3
32

) (

z
∆3−∆2−∆w=1

1
21 z

∆2−∆3−∆w=1
1

31 z
∆w=1

1 −∆2−∆3

32

)

×(antiholomorphic part) , (2.12)

where J is given in (2.6) and ∆w=1
1 is (see (2.3))

∆w=1
1 = ∆1 − J +

k

4
. (2.13)

B(j) is given in (2.10) and C(j1, j2, j3) is the coefficient corresponding to the amplitude of

three w = 0 fields, namely

C(j1, j2, j3) = −
G(1 − j1 − j2 − j3)G(j3 − j1 − j2)G(j2 − j3 − j1)G(j1 − j2 − j3)

2π2νj1+j2+j3−1γ
(

k−1
k−2

)

G(−1)G(1 − 2j1)G(1 − 2j2)G(1 − 2j3)
,

(2.14)

where

G(j) = (k − 2)
j(k−1−j)
2(k−2) Γ2(−j | 1, k − 2)Γ2(k − 1 + j | 1, k − 2) ,

1See appendix D of [1] for a detailed analysis.
2Actually this expression differs from the one in [1] by an irrelevant factor (−1)J−J̄ , as it can be verified

using the property J − J̄ ∈ Z together with the identity Γ(x)Γ(1 − x) = π
sin(πx)

.
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and Γ2(x|1, ω) is the Barnes double Gamma function which reads

log(Γ2(x | 1, ω)) = lim
ε→0

∂

∂ε





∞
∑

n,m=0

(x + n + mω)−ε −

∞
∑

n,m=0 ; (n,m)6=(0,0)

(n + mω)−ε



 .

This three point function was obtained in [1] by first computing a four point function

including one spectral flow operator Φ k
2
. Such calculation is performed by explicitly solving

the corresponding KZ and null vector equations. The four point function gives rise to (2.12)

after spectral flowing as in the definition (2.5) or alternatively, after transforming to the

m basis, extracting the pole residue at m = −k
2 and acting with the spectral flow operator

on the unflowed field Φj1.

This summarizes the already known explicit expressions for correlators including spec-

tral flowed fields. Note that, whereas the two point function is known for fields in unlimited

winding sectors, the situation gets more complicated in the case of the three point func-

tion, where only the case involving one w = 1 and two w = 0 operators has been computed

so far. The increasing difficulties to compute three point functions including additional

spectral flowed fields are due to the fact that one has to start from amplitudes containing

more spectral flow operators. In the following section we shall illustrate this statement by

going one step further and computing the amplitude of two w = 1 and one w = 0 states in

the x basis starting from the five point function which includes two spectral flow operators.

3. Three point function involving two w = 1 fields

We want to compute the following three point function including two w = 1 fields
〈

Φw=1,j1
J1,J̄1

(x1, z1)Φj2(x2, z2)Φ
w=1,j3
J3,J̄3

(x3, z3)
〉

. (3.1)

The starting point is the five point function with two spectral flow operators, namely

A5 ≡ 〈Φ k
2
(x1, z1)Φ k

2
(x2, z2)Φj1(y1, ζ1)Φj2(y2, ζ2)Φj3(y3, ζ3)〉 . (3.2)

Due to the spectral flow operators inserted at (x1, z1) and (x2, z2), A5 must obey the null

vector equations

0 =

5
∑

i=2

xi − x1

z1 − zi

[

(xi − x1)
∂

∂xi
+ 2ji

]

A5 , (3.3)

at (x1, z1) and a similar one at (x2, z2), where we have renamed the insertion points yi =

xi+2, ζi = zi+2. Moreover the singular state condition allows to simplify the action of the

Sugawara construction on Φ k
2

as

L−1|j = k/2〉 = −J3
−1|j = k/2〉. (3.4)

Therefore the insertion of the spectral flow operators implies the following reduced form of

the corresponding KZ equation

∂A5

∂z1
= −

5
∑

i=2

1

z1 − zi

[

(xi − x1)
∂

∂xi
+ ji

]

A5 , (3.5)

and similarly for (x2, z2).
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The xi dependence of the solution to the null vector equations was found in [9] (see

also [1]). Here we give the complete solution including the dependence on the worldsheet

coordinates zi, which is determined from the Ward identities and the reduced KZ equa-

tions (3.5), namely

A5 = B(j1)B(j3)C

(

k

2
− j1, j2,

k

2
− j3

)

|z12|
k|z13|

−2j1 |z14|
−2j2 |z15|

−2j3

×|z23|
−2j1 |z24|

−2j2 |z25|
−2j3 |z34|

2(∆3−∆1−∆2)|z35|
2(∆2−∆1−∆3)|z45|

2(∆1−∆2−∆3)

×|x12|
2(j1+j2+j3−k)|µ1|

2(j1−j2−j3)|µ2|
2(j2−j1−j3)|µ3|

2(j3−j1−j2) , (3.6)

with

µ1 =
x14x25

z14z25
−

x15x24

z15z24
,

µ2 =
x15x23

z15z23
−

x13x25

z13z25
,

µ3 =
x13x24

z13z24
−

x14x23

z14z23
. (3.7)

The way to determine the coefficient

C5(j1, j2, j3) = B(j1)B(j3)C

(

k

2
− j1, j2,

k

2
− j3

)

, (3.8)

is reviewed in appendix A where we also list some properties of B(j) and C(j1, j2, j3) which

are useful for the calculations below.

It can be verified that this result reduces to the four point function involving one

spectral flow operator computed in reference [1] when one of the generic spins vanishes.

Indeed taking for instance j2 = 0 in the five point function (3.6), the coefficient C5 gives

B(j1)δ(j1−j3) and the xi, zi dependence reproduces the correlation function 〈Φj1Φ k
2
Φj3Φj4〉

(with the obvious change in labels) given in equation (5.25) of reference [1] when another

field has spin k
2 . Actually taking j1 = k

2 in the equation computed by J. Maldacena

and H. Ooguri, the ji dependent coefficient reduces to B(j3)δ(j3 − j4) and the coordinate

dependence in both expressions matches, with the obvious renaming of spins and points.

As an intermediate step before computing the three point function we spectral flow

once to obtain the following four point function

Aw=1
4 = 〈Φw=1,j1

J1,J̄1
(x1, z1)Φ k

2
(x2, z2)Φj2(y2, ζ2)Φj3(y3, ζ3)〉 . (3.9)

This auxiliary result will also be useful for the computation of the four point function

involving one spectral flowed and three unflowed generic states which we perform in sec-

tion 5. Applying the prescription (2.5) to A5 and setting y1 = x1 + t, ζ1 = z1 + ε we have

to compute

Aw=1
4 = lim

ε,ε̄→0
εm1εm1

∫

tj1−m1−1t
j1−m1−1

A5(x1, z1, x2, z2, x1 + t, z1 + ε, y2, ζ2, y3, ζ3) d2t

= C5(j1, j2, j3)|x12|
2(j1+j2+j3−k)|µ1|

2(j1−j2−j3) lim
ε,ε̄→0

εm1εm1

∫

d2t tj1−m1−1t
j1−m1−1

×

∣

∣

∣

∣

x15(x21 − t)

z15(z21 − ε)
−

tx25

εz25

∣

∣

∣

∣

2(j2−j1−j3)
∣

∣

∣

∣

tx24

εz24
−

(x21 − t)x14

(z21 − ε)z14

∣

∣

∣

∣

2(j3−j1−j2)

,
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where we have omitted the overall dependence on the worldsheet coordinates zi. The

integrand can be easily taken to the form tpt̄p̄|at + b|2q|ct + d|2r and we can then use an

identity found in reference [10] which we recall in appendix B, equation (B.1), to perform

the integration. Taking next the limit ε, ε → 0 the ε, ε dependence cancels and we finally

obtain

Aw=1
4 = 2iπ(−1)m1+m̄1B(j1)B(j3)C

(

k

2
− j1, j2,

k

2
− j3

)

γ(j2 − j1 − j3 + 1)

×
Γ(j1 − J1 + k

2 )Γ(j3 − j2 + J̄1 −
k
2 )

Γ(1 − j1 + J̄1 −
k
2 )Γ(j2 − j3 − J1 + k

2 + 1)

×

[

2F1

(

j1 + j2 − j3, j1 − J1 +
k

2
, j2 − j3 − J1 +

k

2
+ 1;u

)

×2F1

(

j1 + j2 − j3, j1 − J̄1 +
k

2
, j2 − j3 − J̄1 +

k

2
+ 1; ū

)

+λuj3+J1−j2−
k
2 ūj3+J̄1−j2−

k
2 2F1

(

j1+ j3− j2, j1+ J1−
k

2
, j3+ J1− j2−

k

2
+ 1;u

)

×2F1(j1 + j3 − j2, j1 + J̄1 −
k

2
, j3 + J̄1 − j2 −

k

2
+ 1; ū)

]

×x
j2+j3−J1−

k
2

12 x̄
j2+j3−J̄1−

k
2

12 |x14|
−4j2x

j2−j3−J1+
k
2

15 x̄
j2−j3−J̄1+

k
2

15

×x
J1−

k
2
−j2−j3

25 x̄
J̄1−

k
2
−j2−j3

25 z
∆3−∆w

1 −∆2−∆k/2

14 z̄
∆3−∆̄w

1 −∆2−∆k/2

14 z
∆2−∆w

1 −∆3+∆k/2

15

×z̄
∆2−∆̄w

1 −∆3+∆k/2

15 z
∆k/2+∆w

1 −∆3−∆2

45 z̄
∆k/2+∆̄w

1 −∆3−∆2

45 |z25|
k

×zJ1 z̄J̄1 |1 − u|2(j1−j2−j3)|1 − z|−2j2 . (3.10)

Here x = x12x45
x14x25

, z = z12z45
z14z25

, u = 1−x
1−z and

λ =
γ(j1 + j3 − j2)Γ(j2 − j3 − J1 + k

2 + 1)Γ(j1 + J̄1 −
k
2 )

γ(j1 + j2 − j3)Γ(j3 + J̄1 − j2 −
k
2 + 1)Γ(j3 + J̄1 − j2 −

k
2 )

×
Γ(J̄1 −

k
2 − j1 + 1)Γ(j2 − j3 − J1 + k

2 )

Γ(j1 − J1 + k
2 )Γ(−j1 − J1 + k

2 + 1)
. (3.11)

Now, the three point function (3.1) can be obtained either spectral flowing once more

from this four point function or fusing two physical fields in the five point function (3.6),

say Φj1(y1, ζ1) and Φj2(y2, ζ2), with the spectral flow operators through the prescription

(2.5). The first procedure is useful to determine the coordinate dependence of the three

point function whereas the second one is more convenient to obtain the spin dependent

coefficient. Therefore we present both.

Let us first start from the four point function (3.10). It is convenient to rename

x2, z2 → x3, z3 and set x5 ≡ y3 = x3 + s and z5 ≡ ζ3 = z3 + ξ. By definition we have

Aw=1,w=1
3 = 〈Φw=1,j1

J1,J̄1
(x1, z1)Φj2(y2, ζ2)Φ

w=1,j3
J3,J̄3

(x3, z3)〉

= C5(j1, j2, j3)γ(j2 − j1 − j3 + 1)
Γ(j1 − J1 + k

2 )Γ(j3 − j2 + J̄1 −
k
2 )

Γ(1 − j1 + J̄1 −
k
2 )Γ(j2 − j3 − J1 + k

2 + 1)
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×2i(−1)m1+m1πx
j2+j3−J1−

k
2

13 x̄
j2+j3−J̄1−

k
2

13 |x14|
−4j2

×z
∆3−∆w

1 −∆2−∆ k
2

14 z̄
∆3−∆̄w

1 −∆2−∆ k
2

14

× lim
ξ,ξ̄→0

ξm2+ k
2 ξ̄m2+

k
2 (z13 − ξ)

∆2−∆3−∆w
1 +∆ k

2 (z̄13 − ξ̄)
∆2−∆3−∆̄w

1 +∆ k
2

×(z43 − ξ)
−∆2−∆3+∆w

1 +∆ k
2 (z̄43 − ξ̄)

−∆2−∆3+∆̄w
1 +∆ k

2 zJ1 z̄J̄1|1 − z|−2j2

×

∫

d2s sj3−m3−1s̄j3−m3−1sJ1−
k
2
−j2−j3 s̄J̄1−

k
2
−j2−j3

×(x13 − s)j2−j3−J1+
k
2 (x̄13 − s̄)j2−j3−J̄1+

k
2 |1 − u|2(j1−j2−j3)

×

[

2F1

(

j1 + j2 − j3, j1 − J1 +
k

2
, j2 − j3 − J1 +

k

2
+ 1;u

)

2F1(ū)

+λ uj3+J1−j2−
k
2 ūj3+J̄1−j2−

k
2 (3.12)

×2F1

(

j1 + j3 − j2, j1 + J1 −
k

2
, j3 + J1 − j2 −

k

2
+ 1;u

)

2F1(ū)

]

,

where 2F1 denotes the hypergeometric function in the previous factor with the replacement

J1 → J̄1 in the arguments. It is convenient to change variables as suggested by the following

definition

u =
(x13 − s)x23

x12s

ξz12

z23(z13 − ξ)
= e

x13 − s

s
. (3.13)

Namely, taking s = ex13
u+e it can be shown that the exponents of ξ, ξ̄ cancel and the integral

can be rewritten as

Aw=1,w=1
3 = C5(j1, j2, j3)γ(j2 − j1 − j3 + 1)

Γ(j1 − J1 + k
2 )Γ(j3 − j2 + J̄1 −

k
2 )

Γ(1 − j1 + J̄1 −
k
2 )Γ(j2 − j3 − J1 + k

2 + 1)

×2iπ(−1)m1+m1xJ3−J1−j2
12 x̄J̄3−j2−J̄1

12 xj2−J1−J3
13 x̄j2−J̄1−J̄3

13 xJ1−j2−J3
23 x̄J̄1−j2−J̄3

23

×z
∆w

3 −∆w
1 −∆2

12 z̄
∆̄w

3 −∆̄w
1 −∆2

12 z
−∆2−∆w

3 +∆w
1

23 z̄
−∆2−∆̄w

3 +∆̄w
1

23 z
∆2−∆w

1 −∆w
3

13 z̄
∆2−∆̄w

1 −∆̄w
3

13

× lim
ξ,ξ̄→0

∫

d2u uj2−j3−J1+
k
2 ūj2−j3−J̄1+

k
2

×(u + e)J3+j2−J1(ū + ē)J̄3+j2−J̄1|1 − u|2(j1−j2−j3)

×

[

2F1

(

j1 + j2 − j3, j1 − J1 +
k

2
, j2 − j3 − J1 +

k

2
+ 1;u

)

2F1(ū)

+λuj3+J1−j2−
k
2 ūj3+J̄1−j2−

k
2

×2F1

(

j1 + j3 − j2, j1 + J1 −
k

2
, j3 + J1 − j2 −

k

2
+ 1;u

)

2F1(ū)

]

,

so that we can safely take the limit ξ, ξ̄ → 0 inside the integral.

Thus we have found the functional form of the three point function but we still have

to determine the ji, Ji dependence. One way to do it is to solve the integral above. This

can be done using results that have been found in reference [10], but it is very tedious.

Therefore we will proceed along the alternative path, i.e. spectral flowing twice directly

from the five point function.
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Since the coordinate dependence of the three point function has been determined we

can use conformal invariance to fix three of the insertion points of the fields in A5 whereas

the other two get fixed from the spectral flow operation. In this way we find an integral

which can be explicitly computed following [11, 12].

Let us fix x1 = z1 = 0, x2 = z2 = 1, y3 = ζ3 = ∞ and set y1 = x1 + t1, ζ1 = z1 + ε1, y2 =

x2 + t2 and ζ2 = z2 + ε2 in (3.6). Then the three point function takes the following form

〈

Φw=1,j1
J1,J̄1

(0, 0)Φw=1,j2
J2,J̄2

(1, 1)Φj3(∞,∞)
〉

= lim
ε1,ε2,ε̄1,ε̄2→0

εm1
1 εm1

1 εm2
2 εm2

2

×

∫

d2t1d
2t2 t

2(j1−m1−1)
1 t̄

2(j1−m1−1)
1 t

2(j2−m2−1)
2 t̄

2(j2−m2−1)
2 A5(t1, t̄1, ε1, ε̄1; t2, t̄2, ε2, ε̄2)

= lim
ε1,ε2,ε̄1,ε̄2→0

εm1
1 εm1

1 εm2
2 εm2

2

∫

d2t1d
2t2 t

2(j1−m1−1)
1 t

2(j1−m1−1)
1 t

2(j2−m2−1)
2 t

2(j2−m2−1)
2

×

∣

∣

∣

∣

ε1 − t1
ε1(1 + ε1)

∣

∣

∣

∣

2(j2−j1−j3)
∣

∣

∣

∣

ε2 − t2
ε2(1 + ε2)

∣

∣

∣

∣

2(j1−j2−j3)
∣

∣

∣

∣

t1t2
ε1ε2

−
(1 + t1)(1 − t2)

(1 + ε1)(1 − ε2)

∣

∣

∣

∣

2(j3−j1−j2)

×|ε1(1 + ε1)|
−2j1 |ε2(1 + ε2)|

−2j2 |1 + ε1 − ε2|
2(∆3−∆1−∆2) . (3.14)

Performing the change of variables t1 = uε1, t2 = vε2, the exponents of ε1 and ε2 cancel

and the integral becomes
∫

d2u d2v uj1−m1−1ūj1−m1−1v̄j2−m2−1vj2−m2−1

× |u − 1|2(j2−j1−j3)|v − 1|2(j1−j2−j3)|uv − 1|2(j3−j1−j2) .

Defining v′ = v−1 this takes the form of the integral computed in reference [11] (see also [12])

which we review in appendix B for completeness. Reinserting the coordinate dependence,

the final result is

〈

Φw=1,j1
J1,J̄1

(x1, z1)Φ
w=1,j2
J2,J̄2

(x2, z2)Φj3(x3, z3)
〉

= B(j1)B(j2)C

(

k

2
− j1,

k

2
− j2, j3

)

×
Γ(j3 − J1 + J2)Γ(j3 + J̄1 − J̄2)Γ(2 − j1 − j2 − j3)

2

Γ(1 − j3 − J1 + J2)Γ(1 − j3 + J̄1 − J̄2)
W (j1, j2, j3, J1, J2, J̄1, J̄2)

×xj3−J1−J2
12 x̄j3−J̄1−J̄2

12 x
(J2−J1−j3)
13 x̄J̄2−J̄1−j3

13 xJ1−J2−j3
23 x̄J̄1−J̄2−j3

23

×z
∆3−∆w=1

1 −∆w=1
2

12 z̄
∆3−∆̄w=1

1 −∆̄w=1
2

12 z
∆w=1

2 −∆w=1
1 −∆3

13 z̄
∆̄w=1

2 −∆̄w=1
1 −∆3

13

×z
∆w=1

1 −∆w=1
2 −∆3

23 z̄
∆̄w=1

1 −∆̄w=1
2 −∆3

23 , (3.15)

where

W (ji, Ji, J̄i) = s(j2 − j1 − j3)G

[

j2 + J2 −
k
2 , j2 − j1 − j3 + 1, 1 − j3 + J2 − J1

j2 − j1 + J2 − J1 + 1, 2 − j1 − j3 + J2 −
k
2

]

×

{

s(j1 − j2 − j3)G

[

j1 − j2 − j3 + 1, j1 + J̄1 −
k
2 , 1 − j3 + J̄1 − J̄2

2 − j2 − j3 + J̄1 −
k
2 , j1 − j2 + J̄1 − J̄2 + 1

]

−s(1 − 2j2)G

[

j2 − J̄2 + k
2 , j2 − j1 − j3 + 1, 1 − j3 + J̄1 − J̄2

j2 − j1 + J̄1 − J̄2 + 1, 2 − j1 − j3 − J̄2 + k
2

]}
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+s(j1 − j2 − j3)G

[

j1 − j2 − j3 + 1, j1 − J1 + k
2 , 1 − j3 − J1 + J2

2 − j2 − j3 − J1 + k
2 , 1 + j1 − j2 + J2 − J1

]

×

{

−s(1 − 2j1)G

[

j1 − j2 − j3 + 1, j1 + J̄1 −
k
2 , 1 − j3 + J̄1 − J̄2

2 − j2 − j3 + J̄1 −
k
2 , j1 − j2 + J̄1 − J̄2 + 1

]

(3.16)

+s(j2 − j1 − j3)G

[

j2 − J̄2 + k
2 , j2 − j1 − j3 + 1, 1 − j3 + J̄1 − J̄2

j2 − j1 + J̄1 − J̄2 + 1, 2 − j1 − j3 − J̄2 + k
2

]}

,

with G
[

a,b,c
e,f

]

≡ Γ(a)Γ(b)Γ(c)
Γ(e)Γ(f) 3F2(a, b, c; e, f ; 1) and s(a) = sin(πa). The expression for

W (ji, Ji, J̄i) can be rewritten using standard properties of the generalized hypergeometric

function listed in appendix B to show that, since mi−mi ∈ Z, it is symmetric with respect

to Ji and J̄i.

As a consistency check on the result (3.15), we verify that it reduces to the two point

function of one unit spectral flowed states when j3 = 0. Indeed we obtain
〈

Φw=1,j1
J,J̄

(x1, z1)Φ
w=1,j2
J,J̄

(x2, z2)Φj3=0(x3, z3)
〉

= x−2J
12 x̄−2J̄

12 z
−2∆w=1

1
12 z̄

−2∆̄w=1
1

12

×B(j1)δ(j1 − j2)Γ(0)
Γ(1 − 2j1)

Γ(2j1)

Γ(j1 + m1)Γ(j1 − m̄1)

Γ(1 − j1 + m1)Γ(1 − j1 − m̄1)
,

in agreement with the results in [1]. Here we have used the properties of B(j) and

C(j1, j2, j3) which are listed in appendix A. We can identify the factor Γ(0) in this ex-

pression with the volume of the conformal group of S2 with two fixed points, namely

Vconf =
∫

d2z|z|−2. Actually, as discussed in reference [1], in general a divergence arises

when computing correlators which include spectral flowed fields. The definition (2.5) of

these fields already contains a rescaling Φ̃ → Φ = Vconf Φ̃, thus in this case there is a factor

V 2
conf whose product with V −1

conf in the expression (5.13) of reference [1], computed in the

m basis, explains the factor Vconf ∼ Γ(0) which we have found here.

Let us analyze the properties of our result. The function W (ji, Ji, J̄i) is analytic in

its arguments for states belonging to the continuous representation or their spectral flow

images. Therefore the three point function (3.15) is perfectly well behaved and finite for

normalizable operators with j = 1
2 + is, as expected. If one of the original unflowed

states, say Φj1, belongs to a lowest weight representation, i.e.,m1 = j1 + n1,m1 = j1 + n1

with n1, n̄1 = 0, 1, 2, . . ., then it can be shown that W (ji, Ji, J̄i) greatly simplifies, and

taking further n1, n̄1 = 0 the hypergeometric functions become unity. The analysis of

W (ji, Ji, J̄i) completely agrees with that of reference [12] (taking into account the change

in notation). However notice that we are dealing with a winding conserving three point

function which includes two one unit spectral flowed states whereas [12] considers unflowed

states. Moreover (3.15) is an x basis correlator unlike the m basis expression analyzed

in [12].

The three point function (3.15) has various poles which come from the poles in C5,

in the Γ−functions and in the unrenormalized hypergeometric functions. C5 has the same

poles as the unflowed three point function, namely at

j = n + m(k − 2), −(n + 1) − (m + 1)(k − 2), n,m = 0, 1, 2, . . . , (3.17)
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with

j = 1 − j1 − j2 − j3, j1 − j2 − j3, j2 − j3 − j1, j3 − j2 − j1 . (3.18)

The Γ−functions add the following poles

J1 = J2 + j3 + n, J2 = J1 + j3 + n , (3.19)

and similar ones for J̄1, J̄2. The poles of G
[

a,b,c
e,f

]

are at a, b, c, u = −n, with u = e+f −a−

b−c, and thus they are all contained in the previous ones except for the poles signaling the

presence of spectral flowed images of the discrete representations, e.g. m1 = j1 + n1,m1 =

j1 + n1. Therefore the pole structure is as discussed in reference [1] in the unflowed case

with the addition of (3.19), which are analogous to poles in the S matrix of string theory

in Minkowski space.

4. Ward identities, KZ and null vector equations

The computation of more complicated correlation functions along the lines of the previous

section would require to start from higher point amplitudes. Actually the cases following

in complexity, namely the three point function including three one-unit spectral flowed

operators or the four point function involving one w = 1 field require the knowledge of

the six point function with three spectral flow operators and three physical states or the

five point function with one Φ k
2

and four generic unflowed fields respectively. In this

section we discuss general properties of correlation functions containing w = 1 spectral

flowed operators in the x basis in order to find an alternative method to compute such

more complicated amplitudes. More specifically, we will derive the Ward identities and

the modified KZ and null vector equations to be satisfied by generic correlators including

w = 1 fields. We begin by giving an account of the already known results on the subject

and the difficulties we expect to find in order to make further progress.

4.1 Ward identities

We investigate first the form of the Ward identities when the definitions (2.5) or (2.7) are

used for the w = 1 field. This can also be understood as an additional consistency check

on such definition.

Let us start by considering N point functions of primary w = 0 fields,

AN ≡ 〈Φj1(x1, z1)Φj2(x2, z2) · · ·ΦjN
(xN , zN )〉 .

It is well known that the global SL(2) symmetry of the WZW model determines the Ward

identities to be satisfied by the correlation functions, namely

0 =

N
∑

i=1

∂AN

∂xi
, (4.1)

0 =

N
∑

i=1

(

xi
∂

∂xi
+ ji

)

AN , (4.2)

0 =
N

∑

i=1

(

x2
i

∂

∂xi
+ 2jixi

)

AN . (4.3)
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Now suppose we consider an N +1 point function including one spectral flow operator

Φ k
2

at position (x2, z2),

AN+1 ≡ 〈Φj1(x1, z1)Φ k
2
(x2, z2) · · ·ΦjN+1

(xN+1, zN+1)〉 , (4.4)

and take

x1 = x2 + y , z1 = z2 + ε . (4.5)

In order to obtain the differential equations determined by the Ward identities one has

to be careful that the derivatives act only once on each of the points where the fields are

inserted. Therefore it is convenient to perform the following transformation

∂

∂x1
−→

∂

∂y
,

∂

∂x2
−→

∂

∂x2
−

∂

∂y
, (4.6)

so that the derivatives with respect to x2 act only on the field in the second position and not

on the first one. The Ward identities transform accordingly, so for instance equation (4.2)

reads

0 =

N+1
∑

i=1

(

xi
∂

∂xi
+ ji

)

AN+1

=

[

(x2 + y)
∂

∂y
+ x2

(

∂

∂x2
−

∂

∂y

)

+ j1 +
k

2
+

N+1
∑

i=3

(

xi
∂

∂xi
+ ji

)

]

AN+1

=

[

y
∂

∂y
+ x2

∂

∂x2
+ j1 +

k

2
+

N+1
∑

i=3

(

xi
∂

∂xi
+ ji

)

]

AN+1 . (4.7)

We want to derive the Ward identities for amplitudes containing w = 1 spectral flowed

operators. Equation (2.5) suggests to apply the following operation on (4.7)

lim
ε,ε̄→0

εmε̄m̄

∫

d2y yj1−m−1ȳj1−m̄−1 . (4.8)

Integrating by parts, it can be seen that the Ward identity (4.7) turns into

0 =

[

−(j1 − m) + x2
∂

∂x2
+ j1 +

k

2
+

N+1
∑

i=3

(

xi
∂

∂xi
+ ji

)

]

Aw
N

=

[

x2
∂

∂x2
+

(

m +
k

2

)

+
N+1
∑

i=3

(

xi
∂

∂xi
+ ji

)

]

Aw
N , (4.9)

where from the definition (2.5) we identify

Aw
N ≡

〈

Φw=1,j1
m+ k

2
, m̄+ k

2

(x2, z2)Φj3(x3, z3) · · ·ΦjN+1
(xN+1, zN+1)

〉

. (4.10)

Notice that equation (4.9) is precisely of the same form as (4.2) with the identifica-

tion (2.6) for the spin of the spectral flowed field. It can be shown that the same procedure

gives an equivalent result for the two other Ward identities (4.1) and (4.3).
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Now we focus on global conformal invariance, which determines the following differen-

tial equations for the correlators

0 =
N

∑

i=1

∂AN

∂zi
, (4.11)

0 =

N
∑

i=1

(

zi
∂

∂zi
+ ∆i

)

AN , (4.12)

0 =
N

∑

i=1

(

z2
i

∂

∂zi
+ 2∆izi

)

AN , (4.13)

where the factors ∆i are the conformal dimensions of the fields (see (2.2)). In order to derive

the corresponding Ward identities for correlation functions containing one w = 1 state we

repeat the steps discussed above with the change of variables (4.5) and the corresponding

transformation for the derivatives

∂

∂z1
−→

∂

∂ε
,

∂

∂z2
−→

∂

∂z2
−

∂

∂ε
. (4.14)

Then for instance eq. (4.12) becomes

0 =

N+1
∑

i=1

(

zi
∂

∂zi
+ ∆i

)

AN+1

=

[

(z2 + ε)
∂

∂ε
+ z2

(

∂

∂z2
−

∂

∂ε

)

+ ∆1 −
k

4
+

N+1
∑

i=3

(

zi
∂

∂zi
+ ∆i

)

]

AN+1

=

[

ε
∂

∂ε
+ z2

∂

∂z2
+ ∆1 −

k

4
+

N+1
∑

i=3

(

zi
∂

∂zi
+ ∆i

)

]

AN+1 . (4.15)

Applying to this equation the operation

lim
y,ȳ→0

yj1−mȳj1−m̄

∫

d2ε εm−1ε̄m̄−1 , (4.16)

which is suggested by eq. (2.7), and performing an integration by parts, we can see that

Aw
N satisfies the spectral flowed Ward identity

0 =

[

z2
∂

∂z2
+

(

∆1 − m −
k

4

)

+
N+1
∑

i=3

(

zi
∂

∂zi
+ ∆i

)

]

Aw
N ,

which is of the same form as (4.12) with the following identification for the conformal

dimension of the w = 1 field

∆w=1
1 = ∆1 − m −

k

4
= ∆1 − J +

k

4
, (4.17)

in agreement with (2.3). A similar expression can be found for ∆̄w=1
1 in terms of J̄ . Again,

all this goes through for the two other equations (4.11) and (4.13).
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Therefore we conclude that the Ward identities to be satisfied by correlation functions

including the operator Φw=1,j
J,J̄

coincide with those of the unflowed case with the modifica-

tions (2.6) and (4.17) for the spin and conformal weight of the w = 1 field respectively.

This analysis can be generalized to correlation functions including an arbitrary number of

w = 1 states. From here the general form of the two and three point functions containing

w = 1 fields is completely determined, whereas the four point functions depend, as usual,

on the anharmonic ratios.

4.2 Modified KZ and null vector equations

Now we want to determine the form that the KZ and null vector equations take for cor-

relators including w = 1 fields. In order to do this, let us consider again the N + 1-point

function (4.4). Consider e.g. any point zi with i ≥ 3. The correlator AN+1 satisfies the

standard KZ equation of the form

(k − 2)
∂AN+1

∂zi
=

N+1
∑

n=1, n 6=i

1

zi − zn

[

(xn − xi)
2 ∂2

∂xi∂xn
+ (4.18)

+2(xn − xi)

(

jn
∂

∂xi
− ji

∂

∂xn

)

− 2jijn

]

AN+1 .

In addition, since the spectral flow operator at (x2, z2) has a null descendant, namely

J−
−1|j = k/2;m = k/2〉 = 0, then AN+1 must also obey the following null vector equation

0 =

N+1
∑

n=1, n 6=2

xn − x2

z2 − zn

[

(xn − x2)
∂

∂xn
+ 2jn

]

AN+1 . (4.19)

Our aim here is to perform similar manipulations to those in the previous subsection, in

order to investigate the form of the equations to be satisfied by the N point function

including one w = 1 field, namely Aw
N in (4.10). The general idea is that (4.10) can be

obtained from (4.4) by performing the fusion of Φj1(x1, z1) with Φk/2(x2, z2) through the

prescription (2.5). In that way, the equations to be satisfied by AN+1, namely (4.18)

and (4.19), are expected to turn into those to be obeyed by Aw
N .

In order to do this, let us start by performing the change of variables (4.5) in the KZ

equation (4.18) which can then be rewritten as

(k − 2)
∂AN+1

∂zi
=

1

zi − z2 − ε

[

(x2 + y − xi)
2 ∂2

∂xi∂y

+ 2 (x2 + y − xi)

(

j1
∂

∂xi
− ji

∂

∂y

)

− 2jij1

]

AN+1

+
1

zi − z2

[

(x2 − xi)
2

(

∂2

∂xi∂x2
−

∂2

∂xi∂y

)

+ 2 (x2 − xi)

(

k

2

∂

∂xi
− ji

∂

∂x2
+ ji

∂

∂y

)

− kji

]

AN+1
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+

N+1
∑

n=3, n 6=i

1

zi − zn

[

(xn − xi)
2 ∂2

∂xi∂xn
+

+ 2(xn − xi)

(

jn
∂

∂xi
− ji

∂

∂xn

)

− 2jijn

]

AN+1 . (4.20)

Now acting with the operator (4.8) and integrating by parts in y, we obtain the modified

KZ equation for Aw
N , namely

(k − 2)
∂Aw

N (J)

∂zi
= −

(

j1 − J +
k

2
− 1

)

x2 − xi

(zi − z2)2

[

(x2 − xi)
∂

∂xi
− 2ji

]

Aw
N (J + 1)

+
1

zi − z2

[

(x2 − xi)
2 ∂2

∂xi∂x2
+

+ 2(x2 − xi)

(

J
∂

∂xi
− ji

∂

∂x2

)

− 2jiJ

]

Aw
N (J)

+

N+1
∑

n=3, n 6=i

1

zi − zn

[

(xn − xi)
2 ∂2

∂xi∂xn
+

+ 2(xn − xi)

(

jn
∂

∂xi
− ji

∂

∂xn

)

− 2jijn

]

Aw
N (J) , (4.21)

where J is the spin of the w = 1 field, given by (2.6).

The notation Aw
N (J + 1) indicates that we must replace J −→ J + 1 in Aw

N . Thus,

eq. (4.21), which is interpreted as the KZ equation for an N point function including one

w = 1 field, differs from the standard KZ equation for correlators of unflowed fields. In

fact, notice that (4.21) is an iterative relation in the spin of the spectral flowed field. As

we will see, the property of being iterative in the spins of the spectral flowed fields will be

common to all the equations to be satisfied by correlators including fields in w 6= 0 sectors.

In fact, such a novel feature is not surprising, since it is inherited from the primary state

condition (2.8). We also point out that an equation analogous to (4.21) holds for the

antiholomorphic part, where the iterative variable is J̄ (see (2.6)).

Now, following a similar procedure with the null vector equation (4.19) we obtain an

additional iterative equation, namely

(

j1 + J −
k

2
− 1

)

Aw
N (J − 1) =

N+1
∑

n=3

xn − x2

z2 − zn

[

(xn − x2)
∂

∂xn
+ 2jn

]

Aw
N (J) , (4.22)

which is understood as the modified null vector equation to be satisfied by correlators

containing one w = 1 field. It supplements (4.21), so that both equations must be solved

in order to find the explicit expression of Aw
N . As before, an analogous equation holds for

the antiholomorphic part, with J̄ as the iterative variable. The procedure detailed here

can be extended to the case of correlators including any number of w = 1 fields, where the

spins of all the spectral flowed fields turn out to be iterative variables. In the following

section we will consider some specific calculations.
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5. Four point function including one w = 1 field

The purpose of this section is to explicitly solve the modified KZ and null vector equations

corresponding to the four point function involving one w = 1 field, namely

Aw
4 =

〈

Φj1(x1, z1)Φj2(x2, z2)Φ
w=1,j3
J,J̄

(x3, z3)Φj4(x4, z4)
〉

, (5.1)

which, according to the prior discussions, can be obtained from the five point function
〈

Φj1(x1, z1)Φj2(x2, z2)Φj3(y, ζ)Φ k
2
(x3, z3)Φj4(x4, z4)

〉

, (5.2)

through the prescription (2.5).

From the results of the previous section, we expect that Aw
4 had the same functional

form as an unflowed four point function, but with the spin and conformal dimension of the

w = 1 field given by J = m + k
2 , ∆w=1

3 = ∆3 − J + k
4 . Thus, we consider the following

expression for Aw
4

Aw
4 =

∫

dj B(j3)C(j1, j2, j) B(j)−1C

(

j,
k

2
− j3, j4

)

×D1(j1, j2, j3, J, j4, j) D2(j1, j2, j3, J̄ , j4, j) F(z, x) F̄(z̄, x̄)

×
(

xj1+j2−j4−J
43 x−2j2

42 xJ+j2−j4−j1
41 xj4−j1−j2−J

31

)

×
(

z
∆1+∆2−∆4−∆w=1

3
43 z−2∆2

42 z
∆w=1

3 +∆2−∆4−∆1

41 z
∆4−∆1−∆2−∆w=1

3
31

)

×(antiholomorphic part) , (5.3)

where the dependence in the coefficients B and C is inherited from the five point func-

tion (5.2) (see details in appendix A). Notice that, due to the presence of the spectral

flow operator, we are left with only one state in one of the two intermediate channels. The

other one contributes the integral in j which has to be performed over 1
2 + iR.

In addition, D1 and D2 are the parts of the coefficient of the four point function

depending respectively on the right and left spins of the string states, whereas F and F̄

are functions of the cross ratios

z =
z21z43

z31z42
, x =

x21x43

x31x42
. (5.4)

Now plugging (5.3) into the modified KZ and null vector equations (which, up to the

obvious change in labels, are given by (4.21) and (4.22)) we find respectively the following

iterative expressions3

(

j3 − J +
k

2
− 1

) [

(1 − x)
∂

∂x
+ (j1 + j4 − j2 − J − 1)

]

zD1(J + 1)FJ+1 =

=

{

− (k − 2)z(1 − z)
∂

∂z
+ x(1 − x)(z − x)

∂2

∂x2
−

[

(j4 − j1 − j2 + J − 1)z

−2(j4 − j2 − 1)xz + 2(j1 + j2)x + (j4 − j1 − 3j2 − J − 1)x2
] ∂

∂x

3This is the modified KZ equation at (x1, z1).
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+ [2j2(j4 − j2) − j3(j3 − 1) + J(J − 1) − (k − 2)J + k(k − 2)/4] z

−2j2(j4 − j1 − j2 − J)x − 2j1j2

}

D1(J) FJ ,

(5.5)

and
(

j3 + J −
k

2
− 1

)

(1 − z)D1(J − 1)FJ−1 (5.6)

=

[

(j2 − j4 − j1 + J)(1 − z) − 2j2(1 − x) + (1 − x)(z − x)
∂

∂x

]

D1(J)FJ .

Here D1(J ± 1) (FJ±1) indicates that we must replace J −→ J ± 1 in D1 (F). Analogous

expressions can be found for the antiholomorphic part D2(J̄) (F̄J̄ ).

Now we follow a similar route to that in the unflowed case [1, 3] and expand F in

powers of z as follows

F(z, x) = z∆j−∆j1
−∆j2 xj−j1−j2

∞
∑

n=0

fn(x)zn . (5.7)

We then focus on the lowest order of this expansion. We consider first the KZ equa-

tion (5.5). The crucial result is that, to the lowest order in z, the iterative term in the l.h.s.

does not contribute, whereas the r.h.s. reduces to an expression of precisely the same form

as that of the lowest order of the standard (unflowed) KZ equation, as computed in [3],

with the only difference that j3 is replaced by J . Thus we have the following solution4

f0 = 2F1(j − j1 + j2, j + J − j4, 2j;x) , (5.8)

where 2F1 is the standard hypergeometric function.

Now we turn to the modified null vector equation (5.6). Keeping the lowest order in z

and using (5.8) we find that the coefficient D1 must satisfy the following iterative relation
(

j3 + J −
k

2
− 1

)

D1(J − 1) = (J − j − j4) D1(J) , (5.9)

with an analogous expression for D2. This allows to cancel the coefficient D1 in (5.5)

and (5.6) and we can write equations for all higher order terms in (5.7) starting from the

lowest order (5.8), i.e. we are able to find iterative equations for fn in terms of fn−1 (for

n ≥ 1). This is done by plugging (5.7) into (5.5) and (5.6) and using (5.9). For instance

the modified KZ equation (5.5) gives

(j4 − J + j − 1)

{

x2(1 − x)
d2

dx2
+ [(j1 − j2 + j4 − J − 2j − 1)x + 2j] x

d

dx

4Actually the solution is a linear combination of the functions 2F1(j − j1 + j2, j + J − j4, 2j; x) and

x1−2j
2F1(1− j − j1 + j2, 1− j +J − j4, 2− 2j; x). However, analogously as in the unflowed case [1], we may

use the fact that, when inserted in (5.7), the two solutions are related to each other through the symmetry

j −→ 1 − j which allows to keep only the first solution provided that in (5.3) we now integrate j over the

entire imaginary axis, i.e. 1
2

+ iR.
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+[(j1 + j2 − j)(2j2 − j4 + J + j) − 2j2(j1 + j2 − j4 + J)]x + (k − 2)n

}

f (J)
n =

=

(

j3 + J −
k

2

)(

j3 − J +
k

2
− 1

)

×

[

(1 − x)
d

dx
− (j1 + j2 − j)

1 − x

x
+ j1 − j2 + j4 − J − 1

]

f
(J+1)
n−1

+(j4 − J + j − 1)

{

x(1 − x)
d2

dx2

+ [2(j1 + j4 − j − 1)x − (j1 + j2 + j4 + J − 2j − 1)]
d

dx

+(j1 + j2 − j)(j4 + J − j)
1

x
− 2j1j4 − j3(j3 − 1)

+2j(j1 + j4 − j) + J(J − 1) + (k − 2)(n − 1 − J + k/4)

}

f
(J)
n−1 . (5.10)

An interesting thing about this equation is that, even when it is also iterative in J , as

expected, such iterative terms are all related to the (n − 1)-order factor, fn−1, whereas

there is no iterative term for fn. This allows to write an equation for f
(J)
n in terms of the

data f
(J)
n−1 and f

(J+1)
n−1 .

A similar procedure can be followed with the modified null vector equation (5.6) and

we obtain
[

x(1 − x)
d

dx
+ (j1 − j2 − j)x + j4 + j − J

]

f (J)
n + (J − j − j4) f (J−1)

n (5.11)

=

[

(1 − x)
d

dx
+ j4 + 2j1 − j − J + (j − j1 − j2)

1

x

]

f
(J)
n−1 + (J − j − j4) f

(J−1)
n−1 .

The calculations we have performed so far are similar in spirit to those considered in the

unflowed case [3] (see also [1]). Notice, however, that we have not completely determined

the coefficient D1 yet. Even though the functional dependence on the coordinates is fixed,

all the information we have to fully determine the spin dependent coefficient is the iterative

expression (5.9). This means that the modified KZ and null vector equations do not

completely specify the spin dependence of the four point function. This is not surprising

since a similar situation is found in the unflowed case. Nevertheless, we are still able to

find a proper expression for the coefficient by requiring the following two conditions: i)

that it satisfies (5.9) (and a similar expression for D2), and ii) that Aw
4 in (5.3) correctly

reduces to (2.12), the three point function involving one spectral flowed field, when one of

the unflowed operators is the identity.

It can be shown that a solution to i) and ii) is given by

D1D2 ∼
1

γ
(

j1 + j2 + j3 + j4 −
k
2

)

Γ
(

j3 + J − k
2

)

Γ(1 + J − j4 − j)

Γ(j4 + j − J̄)

Γ
(

1 − j3 − J̄ + k
2

) , (5.12)

up to a k dependent coefficient. Requirement i) can be verified using standard properties of

Γ-functions, whereas ii) is also satisfied since, using the expression above together with (5.8)

and some of the identities in appendix A, it can be shown that (5.3) reduces to (2.12) for

j2 = 0.
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We should point out however that the solution (5.12) is not unique. For instance, the

coefficient in (3.10) verifies both requirements i) and ii) but it does not match (5.12).5

Such residual uncertainties might be removed studying the factorization properties of the

four point function (5.3), following a similar path to that of section 4 in reference [1] for

the unflowed case. However here the pole structure of the four point function presents

additional difficulties since there are poles in the integral in the complex j plane crossing

the integration contour even before performing the analytic continuation. Therefore we

leave this analysis for future work.

6. Discussion and conclusions

The purpose of this work was to study correlation functions involving one unit spectral

flowed string states in AdS3. We have computed the three point function including one

unflowed and two w = 1 states in the WZW model in SL(2,R), and performed the analysis

of the corresponding pole structure. We have also considered the four point function with

one w = 1 and three generic w = 0 states.

We performed various checks on our results. In particular, the Ward identities pre-

scribing the general form of correlation functions containing spectral flowed fields were

discussed and we then verified that the three and four point functions computed indeed

have the form dictated by conformal and global SL(2) invariance. In addition, we also

verified that the three point function including two w = 1 operators reproduces the corre-

sponding two point function of w = 1 spectral flowed fields when the third operator is the

identity.

Our results represent one step forward towards establishing the consistency of string

theory on AdS3. This would require the analysis of the factorization properties of the four

point function (5.3). Actually the structure of the factorization of the unflowed four point

function contains several differences with the flat case and it would be interesting to see

how they generalize when winding is considered. Indeed, it was argued in reference [1] that

the four point functions do not factorize as expected into sums of products of three point

functions with physical intermediate states unless the quantum numbers of the external

states verify j1 + j2 < k+1
2 , j3 + j4 < k+1

2 . The interpretation of these constraints pre-

sented in [1] indicates that correlation functions violating these bounds do not represent

well defined computations in the dual CFT description of the theory on the boundary. This

explanation is similar to the interpretation of the upper bound on the spin of the phys-

ical states (i.e., j < k−1
2 ) as the condition that only local operators be considered in the

boundary CFT. However in the later case one has a clear understanding of the constraint

from the representations of SL(2,R) which define the theory in the bulk. Similarly one

would like to better understand this unusual feature of the correlation functions from the

worldsheet viewpoint. Moreover the factorization structure of the four point function (5.3)

5When checking these last statements it must be taken into account that (3.10) involves, apart from the

obvious changes in labels and the presence of a spectral flow operator, a result which is expressed in cross

ratios other than those in (5.4), so that appropriate transformations must be performed on (3.10) before

comparing it to the expressions in this section.
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would also be important to unambiguously determine the spin dependent coefficient D1D2.

However, as discussed in section 5, the factorization of Aw
4 presents additional difficulties to

those encountered in the unflowed case since there are poles in the integral in the complex

j plane crossing the integration contour even before performing the analytic continuation.

Therefore we postpone the analysis of the consistency of string theory when spectral flowed

correlators are considered for future work.

Correlation functions involving states in higher winding sectors have not been consid-

ered so far. This is an important ingredient for the complete determination of string theory

on AdS3. However this would require, along the lines we have presented here, first of all a

proper definition of such fields in the x basis, which is not known yet.

We have obtained the modified KZ and null vector equations to be satisfied by cor-

relation functions containing w = 1 spectral flowed fields.6 We have shown that these

are iterative equations relating amplitudes generically involving spectral flowed fields with

spins J , J + 1 and J − 1. We managed to manipulate these expressions and analyze the

four point function containing one w = 1 field. The modified KZ and null vector equations

also allowed us to obtain certain three point functions involving three w = 1 fields for

particular combinations of spins (see appendix C). A similar analysis for the three point

function containing two w = 1 states shows, when comparing with the procedure followed

in section 3, that the specific spin relations found correspond to simplified integrals in the

spectral flowing procedure of the original higher point unflowed function involving the op-

erators Φ k
2
, and therefore they seem to have no physical relevance. A more general ansatz

than the one we proposed in (C.12), possibly involving hypergeometric functions, would

be required in order to obtain the full three point function.

Finally let us observe that, according to the well known relation between correlation

functions in the SL(2,R) WZW model and Liouville theory [7, 14], our results can also be

used to obtain amplitudes in this later theory.7
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A. Correlators containing Φk
2

In this appendix we obtain the ji dependent coefficients for the five and six point functions

respectively containing two and three spectral flow operators Φ k
2

as well as three operators

6See [13] for a different approach to the construction of the KZ equations for correlation functions

containing spectral flowed fields.
7See [13, 15] for more recent work on this connection.
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of generic spins j1, j2, j3, in the limit where each Φ k
2

fuses with a Φj to give a spectral

flowed operator. That is, starting from

〈Φj1Φ k
2
Φj2Φ k

2
Φj3〉 , (A.1)

and

〈Φj1Φ k
2
Φj2Φ k

2
Φj3Φ k

2
〉 , (A.2)

we would like to respectively obtain the ji dependent coefficient of the following three point

functions

〈Φw=1,j1
J1,J̄1

Φw=1,j2
J2,J̄2

Φj3〉 , (A.3)

and

〈Φw=1,j1
J1,J̄1

Φw=1,j2
J2,J̄2

Φw=1,j3
J3,J̄3

〉 . (A.4)

In addition, we will perform analogous calculations for the five point function including

only one Φ k
2
, namely

〈Φj1Φj2Φj3Φ k
2
Φj4〉 , (A.5)

in order to obtain the ji dependent coefficient of the four point function

〈Φj1Φj2Φ
w=1,j3
J,J̄

Φj4〉 . (A.6)

The following properties of the B and C coefficients of the two and three point functions

will be useful, namely [1]

B

(

k

2
− j

)

∼
1

B(j)
, (A.7)

C

(

j1, j2,
k

2

)

∼ δ

(

j1 + j2 −
k

2

)

, (A.8)

C

(

k

2
− j,

k

2
− j, 1

)

∼
1

B(j)
, (A.9)

C(j1, j2, 0) = B(j1)δ(j1 − j2) , (A.10)

C

(

k

2
− j1,

k

2
− j2, j3

)

∼ B

(

k

2
− j1

)

B

(

k

2
− j2

)

C(j1, j2, j3) , (A.11)

where ∼ indicates that the identity holds up to a k dependent (j independent) factor.

We start from the following formal expression for the OPE (see [3] for a detailed

definition of the OPE in the SL(2,C)/SU(2) WZW model)

Φj1(x1, z1)Φj2(x2, z2) ∼

∫

dji Q(j1, j2, ji)Φji(x2, z2) , (A.12)

where from now on we drop the xi, zi dependent factors. The coefficient Q can be deter-

mined multiplying both sides of eq. (A.12) by Φj3, namely

Φj1(x1, z1)Φj2(x2, z2)Φj3(x3, z3) ∼

∫

dji Q(j1, j2, ji)Φji(x2, z2)Φj3(x3, z3) , (A.13)
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and taking the expectation values as

〈Φj1(x1, z1)Φj2(x2, z2)Φj3(x3, z3)〉 ∼

∫

dj Q(j1, j2, j)〈Φj(x2, z2)Φj3(x3, z3)〉 . (A.14)

The two point function 〈ΦjΦj3〉 in the right hand side gives two possible contributions

which are proportional to δ(j − j3) and δ(j + j3 − 1) (see eq. (2.9)). As discussed in

reference [12] they both give the same result for Q, namely

Q(j1, j2, j3) =
C(j1, j2, j3)

B(j3)
. (A.15)

Let us now repeat this procedure for the four point function. Starting from eq. (A.13)

we multiply both sides by Φj4(x4, z4) and take the expectation value. One thus obtains

〈Φj1Φj2Φj3Φj4〉 ∼

∫

dj Q(j1, j2, j)〈Φj(x2, z2)Φj3(x3, z3)Φj4(x4, z4)〉

∼

∫

dj C(j1, j2, j)
1

B(j)
C(j, j3, j4) . (A.16)

Suppose one of the fields is a spectral flow operator, for instance j2 = k
2 . The prop-

erties (A.7) and (A.8) allow to perform the integral over j and obtain the coefficient

B(j1)C(k
2 − j1, j3, j4) for the three point function 〈Φw=1,j1

J,J̄
Φj3Φj4〉 [1].

Similarly, if one starts from a five point function, the OPE (A.12) can be used twice,

say for Φj1Φj2 and Φj3Φj4, with the result

〈Φj1Φj2Φj3Φj4Φj5〉 ∼

∫

dj

∫

dj′ Q(j1, j2, j)Q(j3, j4, j
′)〈Φj(x2, z2)Φj′(x4, z4)Φj5(x5, z5)〉 .

(A.17)

Again, if there are spectral flow operators, the result simplifies. For instance consider

j2 = j4 = k
2 . In this case one can perform the double integral above and obtain

〈Φj1Φ k
2
Φj3Φ k

2
Φj5〉 ∼ B(j1)B(j3)C

(

k

2
− j1,

k

2
− j3, j5

)

, (A.18)

for the coefficient of the three point function 〈Φw=1,j1
J1

Φw=1,j3
J3

Φj5〉.

In the more complicated case where we have only one Φ k
2
, say j4 = k

2 , the double

integral turns into a single one of the form

∫

dj
B(j3)

B(j)
C(j1, j2, j) C

(

j,
k

2
− j3, j5

)

, (A.19)

which corresponds to the four point function
〈

Φj1Φj2Φ
w=1,j3
J Φj5

〉

.

Finally if one starts from the six point function containing three spectral flow operators

and wants to obtain the coefficient for 〈Φw=1,j1
J1

Φw=1,j3
J3

Φw=1,j6
J6

〉, the OPE can be used three

times and the properties (A.7) and (A.8) determine the following corresponding coefficient

〈Φj1Φ k
2
Φj3Φ k

2
Φ k

2
Φj6〉 ∼ B(j1)B(j3)B(j6)C

(

k

2
− j1,

k

2
− j3,

k

2
− j6

)

. (A.20)
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B. Useful formulae

In this appendix we collect some useful formulae that have been used in the main body of

the article.

The following integral was found in [10] and it was used in section 3 in order to compute

the four point function Aw=1
4 involving one w = 1 state, one spectral flow operator and

two generic unflowed states

∫

d2t tpt̄p̄ |at + b|2q |ct + d|2r = 2i(−1)p+p̄π
Γ(p + 1)Γ(q + 1)Γ(−p̄ − q − 1)

Γ(−p̄)Γ(−q)Γ(p + q + 2)
|d|2r

×
bp+q+1b̄p̄+q+1

ap+1āp̄+1

[

2F1

(

−r, 1 + p, 2 + p + q;
cb

ad

)

2F1

(

−r, 1 + p̄, 2 + p̄ + q;
c̄b̄

ād̄

)

+λ

(

cb

ad

)−1−p−q (

c̄b̄

ād̄

)−1−p̄−q

2F1

(

−q,−1 − p − q − r,−p − q;
cb

ad

)

× 2F1

(

−q,−1 − p̄ − q − r,−p̄ − q;
c̄b̄

ād̄

)]

, (B.1)

where

λ =
Γ(p + q + 2)Γ(−q − p̄ − r − 1)γ(−q)Γ(−p̄)Γ(p + q + 1)

Γ(−q − p̄)Γ(−q − p̄ − 1)γ(−r)Γ(p + 1)Γ(p + q + r + 2)
. (B.2)

We now write the general result for the integral used in section 3 which was computed

in reference [11] (see also [12] for various equivalent expressions), namely

I =

∫

d2ud2vuα(1 − u)β ūᾱ(1 − ū)β̄vα′

(1 − v)β
′

v̄ᾱ′

(1 − v̄)β̄
′

|u − v|4σ

= −
1

4

(

C12[αi, α
′
i]P

12[ᾱi, ᾱ
′
i] + C21[αi, α

′
i]P

21[ᾱi, ᾱ
′
i]
)

, (B.3)

where

Cab[αi, α
′
i] =

Γ(1 + αa + α′
a − k′)Γ(1 + αb + α′

b − k′)

Γ(k′ − αc − α′
c)

×G

[

α′
a + 1, αb + 1, k′ − αc − α′

c

α′
a − αc + 1, αb − α′

c + 1

]

. (B.4)

Here

G

[

a, b, c

e, f

]

=
Γ(a)Γ(b)Γ(c)

Γ(e)Γ(f)
3F2(a, b, c; e, f ; 1) , (B.5)

α1 = α, α2 = β, α3 = γ, α + β + γ + 1 = k′ = −2σ − 1,

α′
1 = α′, α′

2 = β′, α′
3 = γ′, α′ + β′ + γ′ + 1 = k′ = −2σ − 1,

(B.6)

and similarly for ᾱi and ᾱ′
i. P 12 and P 21 are given by

[

P 12

P 21

]

= Aβ

[

C23

C32

]

= AT
α

[

C31

C13

]

, (B.7)
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with

Aβ = −4

[

s(β)s(β′) −s(β)s(β′ − k′)

−s(β′)s(β − k′) s(β)s(β′)

]

, (B.8)

and s(x) = sin(πx).

The following identities among 3F2(a, b, c; e, f ; 1) = F
[

a,b,c
e,f

]

or G
[

a,b,c
e,f

]

have been used

in section 3 to obtain the two point function of spectral flowed states,

G

[

a, b, c

e, f

]

=
Γ(b)Γ(c)

Γ(e − a)Γ(f − a)
G

[

e − a, f − a, u

u + b, u + c

]

=
Γ(b)Γ(c)Γ(u)

Γ(f − a)Γ(e − b)Γ(e − c)
G

[

a, e − b, e − c

e, u + a

]

,

G

[

a, b, c

e, f

]

=
s(e − b)s(f − b)

s(a)s(c − b)
G

[

b, 1 + b − e, 1 + b − f

1 + b − c, 1 + b − a

]

+
s(e − c)s(f − c)

s(a)s(b − c)
G

[

c, 1 + c − e, 1 + c − f

1 + c − b, 1 + c − a

]

,

(B.9)

where u = e + f − a − b − c.

C. Three point function including three w = 1 fields

In this appendix we aim at computing a three point function involving three w = 1 fields

following the procedure introduced in section 5. Namely we want to compute
〈

Φw=1,j1
J1,J̄1

(x1, z1)Φ
w=1,j2
J2,J̄2

(x2, z2)Φ
w=1,j3
J3,J̄3

(x3, z3)
〉

, (C.1)

which should be obtained from the six point function including three spectral flow operators

〈Φj1(y1, ζ1)Φ k
2
(x1, z1)Φj2(y2, ζ2)Φ k

2
(x2, z2)Φ k

2
(x3, z3)Φj3(y3, ζ3)〉 . (C.2)

The fusion of the spectral flow operators with the remaining fields is expected to give rise

to the w = 1 fields in (C.1). Here we propose an approach which is alternative to the

exhaustive one in section 3, and will allow us to compute (C.1) for specific relations among

the spins of the fields. In fact, this will be done for the following cases

i) j1 + j2 + j3 =
k

2
, (C.3)

ii) j1 + j2 − j3 =
k − 2

2
and permutations , (C.4)

and

iii) j1 + j2 − j3 =
4 − k

2
and permutations . (C.5)

The procedure exemplified here may be useful in order to compute particular expressions

for correlators involving many units of spectral flow, where exhaustive calculations imply

increasing difficulties.
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Our strategy is as follows. We will first perform an intermediate step in which we

will spectral flow only two operators in (C.2) in order to obtain the modified KZ and

null vector equations to be satisfied by the following four point function (after redefining

(y3, ζ3) −→ (x4, z4))

Aw
4 ≡

〈

Φw=1,j1
J1,J̄1

(x1, z1)Φ
w=1,j2
J2,J̄2

(x2, z2)Φ k
2
(x3, z3)Φj3(x4, z4)

〉

. (C.6)

Then we will propose an appropriate ansatz for the solution, and finally spectral flow one

last time in order to find (C.1).

So, by performing calculations analogous to those in the previous sections, we find that

the above four point function obeys the following modified KZ equation which arises from

the spectral flow operator inserted at (x3, z3) in (C.2)
(

j1 − J1 +
k

2
− 1

)

x31

z2
31

Aw
4 (J1 + 1, J2) +

(

j2 − J2 +
k

2
− 1

)

x32

z2
32

Aw
4 (J1, J2 + 1)

=

[

−
∂

∂z3
+

1

z31

(

x31
∂

∂x1
− J1

)

+
1

z32

(

x32
∂

∂x2
− J2

)

(C.7)

+
1

z43

(

x43
∂

∂x4
+ j3

)]

Aw
4 (J1, J2) .

In addition, due to the three spectral flow operators in (C.2) we accordingly get three

modified null vector equations for Aw
4 . They read

(

j1 − J1 +
k

2
− 1

)

x2
31

z2
31

Aw
4 (J1 + 1, J2) +

(

j2 − J2 +
k

2
− 1

)

x2
32

z2
32

Aw
4 (J1, J2 + 1) (C.8)

=

[

x31

z31

(

x31
∂

∂x1
− 2J1

)

+
x32

z32

(

x32
∂

∂x2
− 2J2

)

−
x43

z43

(

x43
∂

∂x4
+ 2j3

)]

Aw
4 (J1, J2) ,

−

(

j1 + J1 −
k

2
− 1

)

Aw
4 (J1 − 1, J2) −

(

j2 − J2 +
k

2
− 1

)

x2
21

z2
21

Aw
4 (J1, J2 + 1) (C.9)

=

[

x21

z21

(

x21
∂

∂x2
+ 2J2

)

+
x31

z31

(

x31
∂

∂x3
+ k

)

+
x41

z41

(

x41
∂

∂x4
+ 2j3

)]

Aw
4 (J1, J2) ,

and
(

j1 − J1 +
k

2
− 1

)

x2
21

z2
21

Aw
4 (J1 + 1, J2) +

(

j2 + J2 −
k

2
− 1

)

Aw
4 (J1, J2 − 1) (C.10)

=

[

x21

z21

(

x21
∂

∂x1
− 2J1

)

−
x32

z32

(

x32
∂

∂x3
+ k

)

−
x42

z42

(

x42
∂

∂x4
+ 2j3

) ]

Aw
4 (J1, J2) .

From the results of section 4, we expect that Aw
4 had the same functional form as an

unflowed four point function, but with appropriate modified expressions for the spins and

conformal dimensions of the w = 1 fields. So we look for a solution of the following form

Aw
4 = D1(j1, J1, j2, J2, j3) D2(j1, J̄1, j2, J̄2, j3) F(z, x) F̄(z̄, x̄)

×
(

x
J1+J2−k/2−j3
43 x−2J2

42 x
J2+k/2−J1−j3
41 x

j3−J1−J2−k/2
31

)

×
(

z
∆w=1

1 +∆w=1
2 +k/4−∆3

43 z
−2∆w=1

2
42 z

∆w=1
2 −k/4−∆w=1

1 −∆3

41 z
∆3−∆w=1

1 −∆w=1
2 +k/4

31

)

× (antiholomorphic part) . (C.11)
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Here we are assuming that there is only one state in each intermediate channel, similarly as

in the construction of [1]. We have shown in appendix A how the spins of the intermediate

states are fixed due to the presence of the spectral flow operators, thus avoiding the integral

introduced in [3]. Notice that D1 and D2 are the coefficients of the four point function

depending on the right and left spins of the string states. The cross ratios z, x are as

in (5.4).

Now we make the following ansatz for the functions F , F̄

F = zα(1 − z)βxµ(1 − x)ν(z − x)ρ , F̄ = z̄ᾱ(1 − z̄)β̄ x̄µ̄(1 − x̄)ν̄(z̄ − x̄)ρ̄ , (C.12)

where the factors of z, 1 − z, x and 1 − x are suggested by the standard structure of

singularities in conformal field theory and string theory, namely those appearing at the

boundary of the moduli space when two or more vertex operator insertions collide on the

worldsheet. The dependence on z − x was found in reference [1] where it was shown to

be required by monodromy invariance of the four point amplitude when the holomorphic

and antiholomorphic parts are combined. The singularity at z = x was interpreted there

as due to instanton effects.

In principle, no further poles arise in presence of spectral flowed states, as noticed

e.g. from direct inspection of (5.5). In fact, plugging (C.11) and (C.12) into (C.7)–(C.10)

we find that the ansatz (C.12) is the solution for relations (C.3)–(C.5) among the spins.

Calculations involve a last step in which we spectral flow the field Φj3 in (C.6) in order

to get the three point function (C.1). This is done using the prescription (2.5) and the

integration procedure is similar as in section 3. Since instead of computing (C.6) we could

also find the three point function (C.1) starting from correlators

A′w
4 ≡

〈

Φj1(y, ζ)Φ k
2
(x1, z1)Φ

w=1,j2
J2,J̄2

(x2, z2)Φ
w=1,j3
J3,J̄3

(x3, z3)
〉

, (C.13)

or

A′′w
4 ≡

〈

Φw=1,j1
J1,J̄1

(x1, z1)Φj2(y, ζ)Φ k
2
(x2, z2)Φ

w=1,j3
J3,J̄3

(x3, z3)
〉

, (C.14)

we must also require that the final result does not depend on the intermediate path we

follow to compute it, which imposes further restrictions.

Following all the prescriptions above, using also the results in appendix A and after

performing some algebra, we arrive at the following three point functions for spins related

as in (C.3)–(C.5)
〈

Φw=1,j1
J1,J̄1

(x1, z1)Φ
w=1,j2
J2,J̄2

(x2, z2)Φ
w=1,j3
J3,J̄3

(x3, z3)
〉

∼ B(j1)B(j2)B(j3)C

(

k

2
− j1,

k

2
− j2,

k

2
− j3

)

×π γ(1 − 2j1)
Γ(j1 + J1 − k/2)

Γ(1 − j1 + J1 − k/2)

Γ(j1 − J̄1 + k/2)

Γ(1 − j1 − J̄1 + k/2)

×π γ(1 − 2j2)
Γ(j2 + J2 − k/2)

Γ(1 − j2 + J2 − k/2)

Γ(j2 − J̄2 + k/2)

Γ(1 − j2 − J̄2 + k/2)

×π γ(1 − 2j3)
Γ(j3 + J3 − k/2)

Γ(1 − j3 + J3 − k/2)

Γ(j3 − J̄3 + k/2)

Γ(1 − j3 − J̄3 + k/2)
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×
(

xJ1−J2−J3
32 xJ2−J1−J3

31 xJ3−J1−J2
21

)

×
(

z
∆w=1

1 −∆w=1
2 −∆w=1

3
32 z

∆w=1
2 −∆w=1

1 −∆w=1
3

31 z
∆w=1

3 −∆w=1
1 −∆w=1

2
21

)

× (antiholomorphic part) , (C.15)

up to some k dependent coefficient.

Explicit results for other relations among the spins could in principle be obtained

using a more involved ansatz than the one in (C.12), possibly involving an hypergeometric

function.
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